Preliminary Measurements of X-Ray Driven Silicon Ablation on the MAGPIE pulsed power generator

Jack Halliday (jack.halliday12@imperial.ac.uk)

Imperial College (MAGPIE): S. N. Bland, S. V. Lebedev, L. G. Suttle, D. R. Russell, V. Valenzuela Villaseca, S. Merlini

Imperial College (CIFS): A. Crilly, J. Chittenden, S. Rose

University of Nevada, Reno: R. C. Mancini

University of Nevada, Reno

Experimental Setup – Overview

Imperial College London

Bo~IOT

Pinch (x-Ray Source)

Side-On (X-Z plane) view of the experiment

End-On (X-Y plane) view of the experiment

- X-Ray radiation from aluminium wire array Z-Pinch drives ablation from a silicon target
- Ablated silicon plasma expands into a magnetic field $(B_{\phi} \sim 10 \text{ T})$ supported by current in the pinch

• Target positioned 1 - 3 cm from pinch

Silicon Plasma

Silicon target

• Experiments driven by MAGPIE (1.4 MA, 240 ns)

Experimental Setup – Overview

Visible image of a silicon ablation experiment on MAGPIE, taken with a digital camera.

Camera shutter was held open for the duration of the experiment. Emission was filtered with ND (Optical density: 3.0)

- Experiments show a smooth (${\sim}1\mathrm{D}$) expansion of ablated plasma from a silicon target
- Plasma conditions are diagnosable using various laser probing techniques
- The well defined plasma profile makes the experiments an ideal testbed for radiation hydrodynamics and resistive MHD problems
- There is scope to introduce spatial non-uniformity by adjusting the target design
- Potential to tune the experimental design in order to study extended MHD effects.

Wire Array Simulations (Imperial-Gorgon + SpK)

Imperial College

London

Optical Self Emission Images

Imperial College London

Optical self emission images [$600 \leq \lambda \leq 900 \text{ nm}$]

Front positions $[x_f]$ extracted from self emission images and plotted with the signal from a filtered (20 µm beryllium, $\varepsilon_{\gamma} \gtrsim 1$ keV) PCD monitoring emission from the array. Comparison of front velocity in 2 separate experiments:

Full Z-Pinch implosion
 Precursor only

Early-time radiation drive is similar for both experiments.

After implosion, the hardness and flux of the drive increase in experiment 1.

Laser Interferometry [Electron Density]

Imperial College London

- Interferogram captured at t = 320 ns
- Smooth (~1D) expansion profile confirmed by orthogonal laser probing

Thomson Scattering [Ion feature - V, T_i, ZT_e]

Thomson

Probe

Imperial College London

Side-on (**X-Z plane**) interferogram showing the position of the Thomson volumes. The probing laser passed over the top of the target (possibility of edge effects).

1.2

Example of a fit to the Ion Feature. The scattering is in a collective regime and electron density is constrained from interferometry.

Thomson Scattering [Ion feature - V, T_i, ZT_e]

Projection of plasma velocity $(V, \widehat{k_s})$ as a function of position, obtained from Thomson scattering data.

Ablation front position (x_f) as a function of time, obtained from self emission images.

- Preliminary results: Detailed uncertainty analysis is ongoing
- Sensitivity to T_i is limited by spectrometer response: Values shown are an upper bound!
- Ion-acoustic feature is sensitive to $Z \times T_e$: Self consistent values of $Z \& T_e$ are obtained from an nLTE atomic code (SpK)
- Possibility of laser absorption (inverse Bremsstrahlung) close to the target

Thomson Scattering [Ion feature - V, T_i, ZT_e]

Next step – Diagnosis of magnetic field strength

- Current flow through pinch produces azimuthal field $\sim 10~{\rm T}$
- Plasma from target expands into this field
- Can diagnose spatial profile of (weighted average) field strength with Faraday rotation imaging

Side-On (X-Z plane) view of the experiment

Imperial College

London

Approximate Plasma Parameters

Parameter	Value
n_e	$1.5 \rightarrow 0.2 \times 10^{19} \text{ cm}^{-3}$
T_e	$\sim 20 \text{ eV}$
T_i	~ 15 eV
$B_{oldsymbol{\phi}}$	~ 10 T
Ionisation stage - Z	~ 6
Velocity - V	$\sim 4 \times 10^6$ cm/s
$\beta = P_{th}/P_{mag}$	$1.2 \rightarrow 0.2$
Energy exchange time $$ - $ au_{ei}^{(E)}$	$1 \rightarrow 7 \text{ ns}$
Diffusive Length - l_D	1 mm
Electron MFP - λ_{ei}	$1 \rightarrow 10 \ \mu m$
Ion MFP - λ_{ii}	$\lambda_{ii} < 1 \ \mu m$
Electron Magnetisation - $\omega_{Ce} au_e$	0.1 ightarrow 0.5
Ion Magnetisation - $\omega_{Ci} au_i$	$\omega_{Ci} au_i \ll 0.1$

