Magnetic Reconnection Experiments on the MAGPIE Pulsed Power Generator

Jack W. D. Halliday (jack.halliday12@imperial.ac.uk)

L. G. Suttle ⁽¹⁾, J. D. Hare ⁽²⁾, S. V. Lebedev ⁽¹⁾, A. Ciardi ⁽³⁾, N. Loureiro ⁽⁴⁾, G. C. Burdiak ⁽⁵⁾, J. P. Chittenden ⁽¹⁾, T. Clayson ⁽⁵⁾, T. Lane ⁽⁶⁾, D. Russell ⁽¹⁾, E. R. Tubman ⁽¹⁾ V. Valenzuela Villaseca ⁽¹⁾

(1) Imperial College London; (2) Max-Planck Institute for Plasma Physics, Munich; (3) Sorbonne University and Paris Observatory;
 (4) Massachusetts Institute of Technology; (5) First Light Fusion Ltd, Oxfordshire

Imperial College London

Multi-university Center for Pulsed-Power Driven High Energy Density Science

Supported by EPSRC Grant No. EP/N013379/1, and by the US DOE Awards No. DE-F03-02NA00057, DE-SC-0001063, and DE-NA-0003764.

Overview

Description of experimental setup

 Diagnostic techniques (Interferometry, Faraday Rotation Thomson Scattering)

• Demonstration of power balance

Plasmoid unstable reconnection

The MAGPIE Current Generator

The MAGPIE Current Generator

The MAGPIE Reconnection Framework

L. G. Suttle *et al.* – PRL 2016; PoP 2018 J. D. Hare *et al.* – PRL 2017; PoP 2017; PoP 2018

The MAGPIE Reconnection Framework

L. Suttle *et al*. PRL (2016), PoP (2018)

Comparison Paper: J. D. Hare *et al* PoP 2018

Overview

Description of experimental setup

 Diagnostic techniques (Interferometry, Faraday Rotation Thomson Scattering)

• Demonstration of power balance

Plasmoid unstable reconnection

Fibre Optic Bundle

Fibre Optic Bundle

jack.halliday12@imperial.ac.uk

Fibre Optic Bundle

Fibre Optic Bundle

jack.halliday12@imperial.ac.uk

Power Balance in the Reconnection Layer

Power Balance in the Reconnection Layer

Overview

Description of experimental setup

 Diagnostic techniques (Interferometry, Faraday Rotation Thomson Scattering)

• Demonstration of power balance

• Plasmoid unstable reconnection

Plasmoid Unstable Magnetic Reconnection

Aluminium Plasma (S~10)

Carbon Plasma (S~100)

Semi-Collisional Plasmoid Instability

In-Situ Measurements of Plasmoid Field Structure

In-Situ Measurements of Plasmoid Field Structure

Conclusions

- Versatile driven reconnection platform (M_A \sim 0.7 or 2)
 - Good power balance between inflows and outflows
 - Anomalous heating with $T_e << T_i$
- Plasmoids observed, consistent with semi-collisional regime

L. G. Suttle *et al.* – PRL 2016; PoP 2018

J. D. Hare *et al.* – PRL 2017; PoP 2017; PoP 2018

Further Work

- Anomalous scattering in the vertical direction (ion-acoustic turbulence)
- Structure along the reconnection layer (temperature / velocity measurements within plasmoids)
- Signatures of plasmoid mergers

			Aluminium		Carbon		
	Parameter		Flow	Layer	Flow	Layer	
	Electron density (cm ⁻³)	n_e	$5 imes 10^{17}$ 1	$1.4 \rightarrow 2.3 \times 10^{10}$	$^{18}3 \times 10^{17}$	$6 imes 10^{17}$	
	Effective charge	Ī	3.5	7 →5.7	4	6	
	Electron temperature (eV)	T_e	15	40 →30	15	100	
	Ion temperature (eV)	T_i	22	$270 \rightarrow 30$	50	600	
	Magnetic field (T)	By	$2 \rightarrow 4$		3		
	Layer half-length L (mm)	$L = R_C/2$	2	7		7	
	Layer half-thickness (mm)	δ		0.3		0.6	
	Ion skin depth (mm)	c/ω_{pi}	0.89	0.37 →0.33	0.71	0.41	
	Ion-ion mean free path (mm)	$\lambda_{i,i}$	6 ×10 ⁻⁴	3×10 ⁻³	4 ×10 ⁻²	3×10 ⁻³	
	Inflow (outflow) velocity (km/s)	$V_x(V_y)$	50	(100)	50	(130)	
	Alfvén speed (km/s)	V_A	$22 \rightarrow 35$		70		
	Sound speed (km/s)	C_S	16	44 →27	30	85	
	Fast-magnetosonic speed (km/s)	V _{FMS}	24 →39		75		
	Ion-electron cooling time (ns)	$\tau^E_{e/i}$	50	40 →20	30	140	
	Radiative cooling time (ns)	τ_{rad}	20	5 →3	100	600	
	Thermal beta	β_{th}	1.1		0.4		
	Dynamic beta	β_{dyn}	10		1		
	Lundquist number	S		$11 \rightarrow 7$		120	
iday12@imperial.ac.uk	Two-fluid effects	L/d_i		19 →22		18	

Plasma Parameters (Carbon Plasma)

Parameter	Inflow	Layer	Parameter	Inflow	Layer
Electron Density (n_e)	$3 \times 10^{17} \text{ cm}^{-3}$	$6 \times 10^{17} \text{ cm}^{-3}$	Alfven Time ($ au_A$)	100 ns	
Effective Charge (\overline{Z})	4	6	Ion-Elec' Cooling Time $(au_{e \setminus { m i}}^E)$	30 ns	140 ns
Electron Temp' (T_e)	15 eV	100 eV	Radiative Cooling Time (au_{rad})	100 ns	600 ns
Ion Temp' (T_i)	50 eV	600 eV	Magnetic Field (B_y)	3 T	
Layer Half-Length (L)	7 mm		Reconnecting E Field (E_{Rec})	150 kV/m	
Layer Half-Width (Δ)	0.6 mm		Dreiser E Field (E_D)		$2 \times 10^3 \text{ kV/m}$
Ion skin depth (d_i)	0.71 mm	0.41 mm	Thermal Beta (eta_{th})	0.4	
Thermal Electron MFP $(\lambda_{ei}^{ ext{th}})$		$9 \times 10^{-2} \text{ mm}$	Dynamic Beta (eta_{dyn})	1	
2 keV Electron MFP ($\lambda_{ei}^{ ext{fast}}$)		40 mm	Lundquist Number (S)	100	
Velocity (v)	$50\hat{x}$ km/s	130 ŷ km/s	Two-Fluid Effects (L/d_i)		18
Alfven Speed (v_A)	70 km/s		$\lambda_{ei}^{ m th}/L$		1×10^{-2}
Sound Speed (C_S)	30 km/s	85 km/s	$\lambda_{ei}^{ m fast}/L$		1
Fast MS Speed (v_{fms})	75 km/s		E_{rec}/E_D		4×10^{-2}

Plasmoids in Electron Density Maps

Plasmoids in Electron Density Maps

Generalised Sweet Parker Model

Thermal pressure significantly accelerates outflows into vacuum:

$$V_{out} = \sqrt{V_A^2 + 2C_{i,A}^2} = 140 \pm 4 \,\mathrm{km/s},$$

Compressibility and ionisation effects enhance inflow velocity:

$$V_{in} = \frac{\delta}{L} \left(V_{out} \frac{n_2}{n_1} + \frac{L}{n_1} \frac{\partial n_2}{\partial t} \right) = 31 \pm 4 \,\mathrm{km/s}$$

 $n_{1/2}$: ion density outside/inside layer

H. Ji, M. Yamada et al. (1999). POP, 6 (5), 1743

Neglect Reconnected Magnetic Field

• Sweet-Parker model predicts:

• Magnetic energy in outflow small: $B_x = \frac{B_y}{\sqrt{S}}$

$$\frac{B_x^2}{2\mu_0} = \frac{1}{S} \frac{B_y^2}{2\mu_0} \approx 0.01 \frac{B_y^2}{2\mu_0}$$

Anomalous Heating of Electrons

- No energy exchange with ions
- No radiative cooling
- Solve:

• Spitzer resistivity too $\frac{3}{2} | \frac{\partial n_e T_e}{\partial t} = \eta_{Sp} j^2$

 $\tau_{E\,e,i} \approx 300\,\mathrm{ns}$

 $\tau_{rad} \approx 600 \,\mathrm{ns}$

 $\tau_{res} \approx 350 \,\mathrm{ns}$

- No energy exchange with electrons $\tau_{Ee,i} \approx 300 \,\mathrm{ns}$
- Solve:

$$\frac{3}{2}n_ik_B\frac{dT_i}{dt}\approx 0.96 n_ik_BT_i \tau_i\left(\frac{\partial V_y}{\partial x}\right)^2$$

Classical viscosity too slow

 $\tau_{visc} \approx 800 \,\mathrm{ns}$