Particle acceleration in pulsed-power driven magnetic reconnection experiments

J. W. D. Halliday (jack.halliday12@imperial.ac.uk)

Imperial College: J. D. Hare, L. G. Suttle, S. V. Lebedev, S. N. Bland, E. R. Tubman G. C. Burdiak, T. Clayson, F. Suzuki-Vidal

Cornell University: S. A. Pikuz, and T. A. Shelkovenko.

Imperial College London

Talk Outline

- MAGPIE reconnection framework and previous results
- Fast particle diagnostics
- Preliminary measurements of fast particles

1. L. G. Suttle, J. D. Hare, S. V. Lebedev, et al. 2016. Phys Rev Lett. **116**, 225001

- 2. J. D. Hare, L. G. Suttle, S. V. Lebedev, et al. 2017. Phys Rev Lett. **118**, 085001
- 3. J. D. Hare, S. V. Lebedev, L. G. Suttle, et al. 2017. Phys Plas. 24, 102703

The MAGPIE Pulsed-Power Generator

(carbon plasma)

^T drive	L	B _{in}	β_{ram}	$\beta_{thermal}$	S
500 ns	~10 mm	3 T	~ 1	~ 1	~ 100

Cross sections of an inverse wire array

Magnetic Reconnection Framework

Magnetic Reconnection Framework

Diagnosing Plasma Flows

J. D. Hare NI2.00001 (Talk On Wednesday)

J. D. Hare, et al. 2017. Phys Plas. 24, 102703

Reconnecting Electric Field

Parameter	Value
u_{in}	50 km/s
B _{in}	3 T
L_Z	16 mm

$$\boldsymbol{E} = -\boldsymbol{u} \times \boldsymbol{B} + \eta \boldsymbol{j}$$

$$E_{rec} = u_{in}B_{in} = 150 \text{ kV/m}$$

$$\int \boldsymbol{F} \cdot d\boldsymbol{l} \sim e E_{rec} L_z = 2.4 \text{ keV}$$

Diagnosing Accelerated Electrons

Diagnosing Accelerated Electrons

X-Ray Imaging and Spectroscopy

Time-integrated filtered pinhole imaging

Time-integrated filtered pinhole imaging

Time-integrated filtered pinhole imaging

Conclusions

- Particles accelerated to at least 1.5 keV
- Observed fast particles were directed down the reconnection layer
- Consistent with direct particle acceleration by the reconnecting electric field

J. D. Hare. *Session NI2* (*Reconnection: Experiments and Observations*) on *Wednesday*, *9:30 AM–10:00 AM*, *in Room 102ABC*.

L. G. Suttle. **Session YO6** (Magnetized HEDP and HED Measurement/Diagnostic Techniques) on **Friday, 9:42 AM– 9:54 AM** in **Room 202C**.

Further Work

- Time resolved measurements
- More emission lines to infer electron energy spectrum

L. G. Suttle. **Session YO6** (Magnetized HEDP and HED Measurement/Diagnostic Techniques) on **Friday, 9:42 AM– 9:54 AM** in **Room 202C**.

Time gated XUV self emission images

X Position

Polypropylene filter transition

Aluminium filter transition

Post-shot images of target

Time resolved measurements

Ionisation cross section

Ref: Dyson, N. A. (2009) X-Rays in atomic and nuclear physics

Runaway electrons

$$E_D = 4.6 \, \text{MV/m}$$

$$\Rightarrow \varepsilon_c = \frac{1}{2}m_e v_c^2 = 24 \text{ keV}$$

No' of runaway
$$\propto \exp(-\varepsilon_c/T_e) \sim 10^{-56}$$

 $|E| = 150 \, \text{kv/m}$

 $T_e = 100 \text{ eV}$ (Thomson scattering)

$$Z_i = 6$$
 (carbon)

 $n_e = 6 \times 10^{17} \, \mathrm{cm}^{-3}$ (Laser interferometry)

Ref: J. D. Callen, Fundamentals of Plasma Physics (draft). July 2006.