Atomic processes in X-Ray driven ablation experiments on university scale pulsed power facilities

Jack Halliday (jack.halliday12@imperial.ac.uk, 🕥: @_jack_halliday)

Imperial College (MAGPIE, Experimental): S. N. Bland, S. V. Lebedev, L. G. Suttle, D. R. Russell, V. Valenzuela Villaseca, S. Merlini

Imperial College (CIFS, Computational): A. Crilly, J. Chittenden, S. Rose

University of Nevada, Reno: R. C. Mancini

Imperial College London

University of Nevada, Reno

This work was supported by the US Department of Energy (DOE) under Award Nos. DE-SC0020434 and DE-NA0003764, and by the US Defence Threat Reduction Agency (DTRA) under Award No. HDTRA1-20-1-0001. Some additional computing support was provided by the UK Central Laser Facility (CLF).

Overview of the experimental design

Imperial College London

- X-Rays from imploding wire array Z-Pinch
- Experiments on MAGPIE/COBRA (1 MA, 250 ns)
- Target positioned 1.5 4 cm from pinch
- Brightness temperature on-target $\sim 10 \text{ eV}$

• Laser probing [Halliday+ PoP 2022] characterizes hydro

- X-Ray absorption experiments will characterize atomic physics
- Motivation: Understanding mechanism for satellite solar panel damage in high altitude nuclear weapons tests (lower X-Ray flux than results here)

Atomic physics strongly influenced by driving radiation pulse & conditions are characterized using independent diagnostics. This means experiments represent a novel testbed for atomic theory / modelling

Plasma outflow is extremely simple

Imperial College London

1021

10¹⁹

L 10¹⁷

20

10

5

(le

e

6

X-Position [mm]

- Smooth $\sim 1D$ expansion profile confirmed by orthogonal laser probing
- Density profiles well reproduced by R-MHD simulations performed with Chimera

Halliday+ PoP 2022

7.5 -

5.0

2.5

0.0

-2.5

-5.0 -

-7.5 -

Z-Position [mm]

R-MHD simulations were performed with Chimera

Imperial College

Thomson scattering [localised diagnosis of T, V, Z]

Imperial College London

Halliday+ PoP 2022

Measured \overline{Z} is higher than the CR equilibrium value

X-Ray Driven Silicon Ablation - jack.halliday12@imperial.ac.uk

- Data points are experimental measurements from IAW Thomson scattering
- Pink curve indicates results from R-MHD simulations
- Blue curve derived by applying simulated n_e and T_e values to FLYCHK simulations (no external radiation field)
- Significant disagreement in \overline{Z} values

Imperial College

Imperial College Charge state distribution altered by driving radiation?

PrismSPECT results with:

> $1 \times 10^{17} \text{ cm}^{-3}$ $T_e = 10 \text{ eV}, \quad n_i = 5 \times 10^{17} \text{ cm}^{-3}$ $1 \times 10^{18} \text{cm}^{-3}$

 Applied external radiation field (approximates pinch at peak emission):

 $T_{c} = 150 \text{ eV}, \quad T_{B} = 10 \text{ eV}$

- Steady-state, nLTE simulation ullet
- Driving radiation perturbs charge state ${\bullet}$ distribution

Modified setup for X-Ray absorption measurements

Imperial College London

First experiments will be performed on COBRA (Cornell University) next week!

Spatially resolve spectra to sample range of n_e values

Imperial College

Diagnose silicon K-Shell absorption features

- Transmission spectra are dominated by $n = 1 \rightarrow 2$ absorption features
- Absorption features for different ionisation stages spectrally separated
- Relative intensity provides diagnostic of charge state distribution
- Instrumental broadening is applied to spectra

Imperial College

Diagnose silicon K-Shell absorption features

Imperial College

Potential to access a photoionization relevant regime? Imperial College London

Photoionization parameter, $\xi = \int d\nu F_{\nu} / n_e$

Conclusions

Imperial College London

- Hydrodynamic features are simple & well- characterized
- Thomson measurements hint that driving radiation changes $ar{Z}$
- Absorption spectroscopy experiments will directly measure charge state distribution
 - Novel testbed for comparison with atomic-kinetics models

This work was supported by the US Department of Energy (DOE) under Award Nos. DE-SC0020434 and DE-NA0003764, and by the US Defence Threat Reduction Agency (DTRA) under Award No. HDTRA1-20-1-0001. Some additional computing support was provided by the UK Central Laser Facility (CLF).

Analysis of Ion-Acoustic Thomson Scattering Data

Imperial College London

(1): Ion Acoustic peak separation depends on $\overline{Z} \times T_e$

(2): Feature width depends on n_e , T_i , and spectral response

(3): Doppler shift from probe wavelength depends on \overrightarrow{V} . $\widehat{k_s}$

Enforced $T_e = T_i$, and allowed \overline{Z} to vary ($\tau_{ei} \leq 1$ ns).

Convolved calculated spectra with measured spectral response.

Constrained value of n_e from (near simultaneous) interferometry.

Wire Array Z-Pinches are an Efficient X-Ray Source

1.4 MA, 240 ns Current Pulse \rightarrow X-Ray Pulse \sim 1 TW

Imperial College

Overview of the experimental design

Imperial College London

- X-Rays from imploding wire array Z-Pinch
- Experiments on MAGPIE/COBRA (1 MA, 250 ns)
- Target positioned 1.5 4 cm from pinch
- Brightness temperature on-target $\sim 10 \text{ eV}$

Optical self emission images [qualitive dynamics]

Imperial College London

Self emission images [$600 \leq \lambda \leq 900 \text{ nm}$]

Optical self emission images [qualitive dynamics]

Imperial College London

Self emission images [$600 \leq \lambda \leq 900 \text{ nm}$]

Optical self emission images [qualitive dynamics]

Imperial College London

Self emission images [$600 \leq \lambda \leq 900 \text{ nm}$]

