Particle Acceleration in Pulsed Power Driven Magnetic Reconnection

Jack W. D. Halliday (jack.halliday12@imperial.ac.uk)

Imperial College: J. D. Hare, L. G. Suttle, S. V. Lebedev, S. N. Bland, E. R. Tubman, D. R. Russell, T. A. Clayson, F. Suzuki-Vidal

Cornell University & Lebedev Institute: S. A. Pikuz, and T. A. Shelkovenko.

Imperial College London

Magnetic Reconnection

- Adjusts B field topology
- Heats plasma
- Accelerates plasma flows
- Generates fast particles

The Plasmoid Instability

Instability causes layer to break up into magnetic islands.

The MAGPIE Pulsed Power Generator

Mega-Ampere class pulsed power generator.

High Impedance → Flexible Loading.

Open Design \rightarrow Good diagnostic access.

Tdrive	L	B _{in}	βram	$\beta_{thermal}$	S
500 ns	~10 mm	3 T	~ 1	~ 1	~ 100

The MAGPIE Reconnection Platform

[L. G. Suttle *et al.* – PRL 2016; PoP 2018] [J. D. Hare *et al.* – PRL 2017; PoP 2017; PoP 2018]

Diagnosing Plasma Flows

Particle Acceleration by Electric Fields

Steady State \rightarrow Electrons accelerated to more than 2 keV

X-Ray Imaging and Spectroscopy

Time Integrated Pinhole Imaging

X-Ray filtering sets spectral range of emission captured in images.

Thomson Data \rightarrow T_e \leq 100 eV.

Emission at much higher energy is from non-thermal electrons.

XUV Image [100 – 400 eV]

Dominated by thermal emission from the plasma.

Structure of layer consistent with laser probing diagnostics.

X-Ray Image [> 750 eV]

Change in intensity shows emission is from the target.

Emission is caused by fast electrons accelerated in the layer.

Time Resolved Pinhole Imaging

Acceleration occurs after the reconnection layer has Formed.

X-Ray Signal is bursty \rightarrow non steady-state physics / instability.

The Plasmoid Instability

Semi-collisional plasmoid instability occurs in pulsed power driven reconnection experiments. [J. D. Hare *et al.* PoP 2017]

Fermi acceleration in plasmoids is a proposed mechanism for non steady-state electron acceleration.
[S. R. Totorica *et al.* PoP 2017]

Time Integrated X-Ray Spectra

Conclusions

- Reconnection layer accelerates electrons to energies over 2 keV
- Consistent with acceleration by the reconnecting electric field
- Acceleration bursty ⇒ non steadystate physics / instabilities?

[L. G. Suttle *et al.* – PRL 2016; PoP 2018] [J. D. Hare *et al.* – PRL 2017; PoP 2017; PoP 2018]