Particle Acceleration in Pulsed Power Driven Magnetic Reconnection

Jack W. D. Halliday (jack.halliday12@imperial.ac.uk)

Imperial College: J. D. Hare, L. G. Suttle, S. V. Lebedev, S. N. Bland, E. R. Tubman, D. R. Russell, T. A. Clayson, F. Suzuki-Vidal

Cornell University & Lebedev Institute: S. A. Pikuz, and T. A. Shelkovenko.

Imperial College London

Talk Outline

- MAGPIE reconnection platform
- Diagnosing energetic particles
- Measurements of accelerated electrons

[L. G. Suttle *et al.* – PRL 2016; PoP 2018] [J. D. Hare *et al.* – PRL 2017; PoP 2017; PoP 2018]

MAGPIE Pulsed-Power Generator

Sub-Alfvénic Regime

^T drive	L	B _{in}	β _{ram}	β _{thermal}	S
500 ns	~10 mm	3 T	~ 1	~ 1	~ 100

Magnetic Reconnection Platform

Magnetic Reconnection Platform

Direct Electron Acceleration

Reconnecting Electric Field

Parameter	Value	Diagnostic		
u _{in}	50 km/s	Thomson Scattering		
B _{in}	3 T	Faraday Rotation		
L _Z	16 mm	Interferometry		

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{j}$$

$$E_{rec} = u_{in}B_{in} = 150 \text{ kV/m}$$
$$\int \mathbf{F}.\,d\mathbf{l} \sim eE_{rec}L_z = \mathbf{2}.\,\mathbf{4} \text{ keV}$$

Diagnosing Accelerated Electrons

X-Ray Imaging and Spectroscopy

Time Integrated Pinhole Imaging

Thomson Scattering $\Rightarrow T_e \leq 100 \text{ eV}$

Time Integrated Pinhole Imaging

Thomson Scattering $\Rightarrow T_e \leq 100 \text{ eV}$

X-Ray Spectroscopy Data

(Figure adapted from S. A. Pikuz et al. 2008. Rev Sci Instr. 79, 013106)

Time Integrated X-Ray Spectra

jack.halliday12@imperial.ac.uk

Conclusions

- Reconnection layer accelerates electrons to energies over 2 keV
- Consistent with acceleration by the reconnecting electric field
- Acceleration bursty ⇒ non steady-state / instabilities?

[L. G. Suttle *et al.* – PRL 2016; PoP 2018] [J. D. Hare *et al.* – PRL 2017; PoP 2017; PoP 2018]

jack.halliday12@imperial.ac.uk

Plasma Parameters

Parameter		Carbon				Carbon	
		Flow Layer		Parameter		Flow Layer	
Electron	ne	3×10^{17}	6×10^{17}	Inflow (outflow) velocity (km/s)	$V_x(V_y)$	50	(130
Effective charge	Z	4	6	Alfvén speed (km/s)	V_A	70	
Electron	T	15	100	Sound speed (km/s)	C_S	30	85
temperature (eV)	1 _e	15	100	Fast-magnetosonic speed (km/s)	V _{FMS}	75	
Ion temperature (eV)	T_i	50	600				
Magnetic field (T)	B_y	3		Ion-electron cooling time (ns)	$\tau^{E}_{e/i}$	30	14
Layer half-length (mm)	$L = \frac{R_C}{2}$		7	Radiative cooling time (ns)	τ_{rad}	100	60
Layer half-thickness	δ		0.6	Thermal beta	β_{th}	0.4	
(mm)				Dynamic beta	Bdyn	1	
Ion skin depth (mm)	c/ω_{pi}	0.71	0.41	Lundquist number	S		12
Ion-ion mean free path (mm)	$\lambda_{i,i}$	4×10^{-2}	3×10^{-3}	Two-fluid effects	L/d_i		18

 $\lambda_{ei} \sim 2.2 \text{ cm}$

Diagnosing Plasma Flows

jack.halliday12@imperial.ac.uk

Diagnosing Plasma Flows

jack.halliday12@imperial.ac.uk

Time Integrated Pinhole Imaging

Time Integrated Pinhole Imaging

Polypropylene filter transition

Aluminium filter transition

Figure 4.8: Comparison of the transmission spectra of aluminium foils with thicknesses of 6.5 μm and 3 μm , for XUV and X-Ray energies.

Figure 4.9: End on pinhole images obtained in the same shot (s1016_17) using 800 μ m pinholes and two different filters (*blue*- 3 μ m aluminium; *red*- 6.5 μ m aluminium).

Magnetic Field Profile (Faraday Rotation Imaging)

J. D. Hare: Pulsed Power Driven Reconnection, jdhare@ic.ac.uk

Velocity and Temperature (Thomson Scattering)

Post-shot images of target

Ionisation cross section

Ref: Dyson, N. A. (2009) X-Rays in atomic and nuclear physics