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Overview of experimental setup

X-Ray Driven Silicon Ablation - jack.halliday12@imperial.ac.uk

End-On (X-Y plane) view of the experiment

• X-Rays from aluminium wire array Z-Pinch

• Experiments driven by MAGPIE (1.4 MA, 240 ns)

• Ablated silicon plasma expands into magnetic 
field (B ~ 10 T)   

• Target size ~1 cm2, irradiated uniformly 

B ~ 1 − 50 T
Erad~ 300 J/cm2

Side-On (X-Z plane) view of the experiment
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• X-Rays from aluminium wire array Z-Pinch

• Experiments driven by MAGPIE (1.4 MA, 240 ns)

• Ablated silicon plasma expands into magnetic 
field (B ~ 10 T)   

• Target size ~1 cm2, irradiated uniformly 



• Overview of the MAGPIE facility 

• Wire array Z-pinches as X-Ray sources

• X-Ray ablated plasma:

• Data from imaging diagnostics

• Local V, T, Z profiles from TS

• Measurement of magnetic flux penetration

• Future work and conclusions  
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Outline

Compare with R-MHD 
simulations (Chimera)
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Experimental facility and diagnostics

1.4MA, 1TW, 250kJ Load region

𝐵𝑦 Faraday rotation

𝑉𝑓𝑙 , 𝑉𝑑 ,𝑍𝑇𝑒 , 𝑇𝑖 Thomson scattering

𝑛𝑒𝐿 Imaging interferometry

~ 30 kJ delivered to a load     

Plasma scales: ቊ
L ∼ 10 mm
𝜏 ∼ 400 ns

Slide credit: S. V. Lebedev
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Instabilities in magnetized 

shock experiments

S. Merlini
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Slide credit: V. Valenzuela-Villaseca

An overview of other recent MAGPIE experiments 



• Overview of the MAGPIE facility 

• Wire array Z-pinches as X-Ray sources

• X-Ray ablated plasma:

• Data from imaging diagnostics

• Local V, T, Z profiles from TS

• Measurement of magnetic flux penetration

• Future work and conclusions  
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Outline

Compare with R-MHD 
simulations (Chimera)
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Photograph of a tungsten wire array, 
fielded on the Z-Machine (SNL)
Credit: Spielman et al. PoP 1998

Diagram of a dynamic hohlraum
ICF experiment  

Credit: Slutz et al. PoP 2006 Experimental schematic of an iron 
opacity experiment 

Credit: Bailey et al. Nature 2015

Wire-Array Z-pinches are versatile X-ray drivers
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Mass density from Gorgon (MHD) 
simulation

Wire array Z-pinch experiments on MAGPIE 

A 32-wire aluminium 
array used in MAGPIE 

experiments
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Spectral Character of Radiation at ~1MA Level

• Precursor:
• Longer pulse 

• Colder spectral character (Tc~ 30 eV)

• Radiates ~ 400 J in total

• Implosion:
• Emitted radiation~15 kJ over ~30 ns

• Non-thermal: forest of L shell lines

• Some K-Shell radiation also

• Estimate Tc~ 150 eV
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Outline

Compare with R-MHD 
simulations (Chimera)



14

Overview of experimental setup
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Side-On (X-Z plane) view of the experiment

4 cm

Silicon 
Target 

B

• X-Rays from aluminium wire array Z-Pinch

• Experiments driven by MAGPIE (1.4 MA, 240 ns)

• Ablated silicon plasma expands into magnetic 
field (B ~ 10 T)   

• Target size ~1 cm2, irradiated uniformly 
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Optical self emission images [qualitive dynamics] 

Self emission images [600 ≲ 𝜆 ≲ 900 nm]

(20 μm Be filter)
𝜀 ≳ 700 eV

Precursor only

d = 4 cm

d = 2 cm

Target

Z-Pinch

1 cm

Z

X
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Interferometry [line integrated electron density]

• Interferogram captured at 𝑡 = 320 ns

• Smooth ~1D expansion profile confirmed by 
orthogonal laser probing 

Target 
position



Radiative MHD simulations [Chimera] 

No B

Density profile is affected by B-Field.
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Radiative MHD simulations [Chimera] 
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Thomson scattering [localised diagnosis of 𝑇, 𝑉, 𝑍]

Side-On (X-Z plane) view of the experiment End-On (X-Y plane) view of the experiment



T = 13.5 ± 2 eV
𝑍 = 6.5 ± 1

𝛼 = 3
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Thomson scattering [localised diagnosis of 𝑇, 𝑉, 𝑍]



②

Analysis of Ion-Acoustic Thomson Scattering Data

①: Ion Acoustic peak separation depends on 𝒁 × 𝑻𝒆

②: Feature width depends on 𝑛𝑒, 𝑻𝒊, and spectral response

③: Doppler shift from probe wavelength depends on 𝑽. 𝒌𝒔

Enforced Te = Ti, and allowed 𝑍 to vary (𝜏𝑒𝑖 ≲ 1 ns).   

Convolved calculated spectra with measured spectral response.

Constrained value of nefrom (near simultaneous) interferometry. 
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①

③
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Analysis of Ion-Acoustic Thomson Scattering Data
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①

③
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Analysis of Ion-Acoustic Thomson Scattering Data

X-Ray Driven Silicon Ablation - jack.halliday12@imperial.ac.uk

Calculated from sims!

𝜅𝜈𝑒 ∝
𝑍𝑛𝑒

2ln Λ 𝑇𝑒
−
3
2

𝜔2 1− ൘𝜔𝑝
2

𝜔2

N. R. L. plasma physics formulary
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Measurement of Inverse Bremsstrahlung Coefficient  

𝐼 = 𝐼0𝑒
−𝜅𝜈𝑒𝑥 ⇒ 𝜅𝜈𝑒 =

−ln( Τ𝐼 𝐼0)

𝑥

𝜅𝜈𝑒 ∝
𝑍𝑛𝑒

2ln Λ 𝑇𝑒
−
3
2

𝜔2 1− ൘
𝜔𝑝
2

𝜔2
Background Image (𝐼0) Shot Image (𝐼) 

N. R. L. plasma physics formulary
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Measurement of Inverse Bremsstrahlung Coefficient  

𝜅𝜈𝑒 ∝
𝑍𝑛𝑒

2ln Λ 𝑇𝑒
−
3
2

𝜔2 1− ൘
𝜔𝑝
2

𝜔2

N. R. L. plasma physics formulary

𝜆~1μm
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Analysis of Ion-Acoustic Thomson Scattering Data
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Next step – Diagnosis of Charge State Distribution 

X

λ

X-Ray spectrometer

Photon energy [eV]

Tr
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Silicon K-Shell absorption 
spectrum from Helios-CR.

(No MHD, inline atomic kinetics)
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Outline

Compare with R-MHD 
simulations (Chimera)
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• Measure rotation applied to laser polarisation:

𝛼 ∝ 𝜆2∫ 𝑛𝑒𝐵. 𝑑 Ԧ𝑦

• Obtain interferometry along same line of sight:

𝑛𝑒𝐿 = ∫ 𝑛𝑒𝑑𝑦

• Combine data to back-out weighted average 
magnetic field:

𝐵𝑦 =
𝛼

𝑛𝑒𝐿
∝
𝜆2∫ 𝑛𝑒𝐵. 𝑑 Ԧ𝑦

∫ 𝑛𝑒𝑑𝑦

Faraday rotation imaging [weighted average of 𝐵𝑦]
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Faraday rotation imaging [weighted average of 𝐵𝑦]
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Arrows indicate caustics ⟹ B field not representative 

Faraday rotation imaging [weighted average of 𝐵𝑦]
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• Diagnostic measures weighted average 
magnetic field:

𝐵𝑦 =
𝛼

𝑛𝑒𝐿
∝
𝜆2∫ 𝑛𝑒𝐵. 𝑑 Ԧ𝑦

∫ 𝑛𝑒𝑑𝑦

• Cannot diagnose field in the vacuum 
(𝑛𝑒 = 0)

• Within region which can be probed, the  
field is approximately constant (~1 T)

Vacuum

Faraday rotation imaging [weighted average of 𝐵𝑦]
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Faraday rotation imaging [weighted average of 𝐵𝑦]
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Faraday rotation imaging [weighted average of 𝐵𝑦]

Simulated profile is more diffusive 
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Faraday rotation imaging [weighted average of 𝐵𝑦]
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Plasma parameters relevant to B-field transport

• Use simulated conditions to calculate 
dimensionless parameters

• At the leading edge:

• Magnetisation may be important in low 
density region 

𝛽𝑡ℎ =
2𝜇0𝑛𝑒 𝑇𝑒 +

𝑇𝑖
𝑍

𝐵2
𝛽𝑑𝑦𝑛 =

2𝜇0𝜌𝑢
2

𝐵2

𝛽𝑡ℎ ~ 𝛽𝑑𝑦𝑛 ≲ 1 Ω𝑒𝜏𝑒𝑖 ≳ 1
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Anomalous resistivity may be driven by the LHDI

Plots of Log(ne) from Gorgon 
simulations of a laser driven plasma 

jet experiment 
Credit: Khiar et al. PRL 2019

• Additional dissipation associated with the Lower 
Hybrid Drift Instability (LHDI) reported to cause 
anomalous resistivity

• Gorgon / Chimera includes a model [1] for 
anomalous resistivity of the form :

𝜈𝑒𝑖 → 𝜈𝑒𝑖 + 𝜈𝐴, 𝜈𝐴 =
𝜋

8
𝜔𝐿𝐻

𝑣𝑑

𝑐𝑠

2

• Simulations of X-ray ablated plasmas run with 
classical (Epperlein-Haines) transport only

[1] – Chittingden et al. PoP 1995
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Flux exclusion is not explained by anomalous resistivity  

X [mm]

n
e
[c
m
−
3
]

B
[T
]

𝜈 𝐴
/𝜈

𝑒
𝑖

• Difficult to see how anomalous resistivity 
can exclude B-field from experiment:

• Additional diffusion should allow magnetic 
flux to penetrate further

• Thickness of anomalous region is small so 
overall effect is negligible 

• Results are from a 1D simulation

• Impact of 𝜈𝐴is increased by a factor of 100 
for the profile of B(x)
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Need to diagnose vacuum boundary! 

Faraday rotation imaging [weighted average of 𝐵𝑦]

Resistive 
Plasma

Vacuum 
Field

Enhanced 
Conductivity

A layer of enhanced conductivity may 
better explain the experimental result:
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Next step – Local Current Density Measurement

Existing setup ⇒ 𝑘𝑠 ⊥ 𝐽 New setup ⇒ 𝑘𝑠 ∥ 𝐽
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Next step – Local Current Density Measurement

New setup ⇒ 𝑘𝑠 ∥ 𝐽

④

④: Peak asymmetry depends on 𝒌𝒔. 𝑽𝒅

L. G. Suttle et al RSI 2021 (MAGPIE experiments)

C. Bruulsema et al PoP 2020 (Current in Weibel 
unstable plasmas)

Diagnose current at vacuum 
boundary with Thomson:

• Can probe smaller 𝑛𝑒

• Reduce λ for less diffraction
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Outline

Compare with R-MHD 
simulations (Chimera)
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Future work – X-Ray ablated plasma collisions

ABS 
Target

1 mm
Si Target

Targets

B

X-Rays

Targets

B

X-Rays

Normal incidence

• Structure of stagnated  layer determined 
by radiative cooling 

• Use targets of two different materials to 
investigate mix

• Large system sizes (L ~ 10 mm)

Oblique incidence

• Radiatively cooled jet is produced

• Vacuum-plasma interface with stark 
difference in morphology 
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Future work – X-Ray ablated plasma collisions

ABS 
Target

1 mm
Si Target

Targets

B

X-Rays

Targets

B

X-Rays
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Conclusions

• Density profiles strongly influenced by ambient B field

• Saw influence of Thomson probe heating

• Radiation field perturbs the charge state distribution (?)

• Magnetic flux was excluded from expanding silicon plasma 



Stagnation layer: Thomson measurements

Collective scattering from Ion Acoustic Waves
kin
(TS laser)

ks1

ks2

k2

k1

Flow velocities (Vx , Vy)

ZTe and Ti

for 22 spatial positions

1
 m

m

Slide credit: S. V. Lebedev



Stagnation layer parameters

eV
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flowi
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Initial ion temperature:

eVTion 90
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Flow velocity and temperature profiles
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Fast Ti – Te equilibration:

Radiative cooling time ?

Plasma flow: 
MS ~ 2;  MA ~ 3 
bth ~ 1

Post-shock
bth ~ 5

Slide credit: S. V. Lebedev



Stagnation layer parameters

Flow velocity and temperature profiles

Plasma flow: 
MS ~ 2;  MA ~ 3 
bth ~ 1

Post-shock
bth ~ 5

105 ./ns hydrcoolcool = 

Radiative cooling time for Si:

10200 ~nscool  

For Carbon at 30 eV:
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Slide credit: S. V. Lebedev


