Radiatively driven plasma flows in experiments on the MAGPIE pulsed-power generator

Jack Halliday (jack.halliday12@imperial.ac.uk, 🕥: @_jack_halliday)

Imperial College (MAGPIE, Experimental): S. N. Bland, S. V. Lebedev, L. G. Suttle, D. R. Russell, V. Valenzuela Villaseca, S. Merlini

Imperial College (CIFS, Computational): A. Crilly, J. Chittenden, G. Kagan, G. Farrow, S. Rose

University of Nevada, Reno: R. C. Mancini

University of Nevada, Reno

Overview of experimental setup

Side-On (X-Z plane) view of the experiment

End-On (X-Y plane) view of the experiment

- X-Rays from aluminium wire array Z-Pinch
- Experiments driven by MAGPIE (1.4 MA, 240 ns)
- Ablated silicon plasma expands into magnetic field (B \sim 10 T)
- Target size $\sim 1 \text{ cm}^2$, irradiated uniformly

Overview of experimental setup

End-On (X-Y plane) view of the experiment

- X-Rays from aluminium wire array Z-Pinch
- Experiments driven by MAGPIE (1.4 MA, 240 ns)
- Ablated silicon plasma expands into magnetic field (B \sim 10 T)
- Target size $\sim 1 \text{ cm}^2$, irradiated uniformly

- Overview of the MAGPIE facility
- Wire array Z-pinches as X-Ray sources
- X-Ray ablated plasma:
 - Data from imaging diagnostics
 - Local V, T, Z profiles from TS

Compare with R-MHD simulations (Chimera)

- Measurement of magnetic flux penetration
- Future work and conclusions

Experimental facility and diagnostics

Imperial College London

1.4MA, 1TW, 250kJ

$\sim 30 \text{ kJ}$ delivered to a load

Plasma scales:
$$\begin{cases} L \sim 10 \text{ mm} \\ \tau \sim 400 \text{ ns} \end{cases}$$

Load region

 $\begin{array}{c} \left< B_{y} \right> & \mbox{Faraday rotation} \\ \hline \overrightarrow{V_{fl}}, \ \overrightarrow{V_{d}}, ZT_{e}, \ T_{i} & \mbox{Thomson scattering} \\ n_{e}L & \mbox{Imaging interferometry} \end{array}$

Experimental facility and diagnostics

Imperial College London

1.4MA, 1TW, 250kJ

$\sim 30 \text{ kJ}$ delivered to a load

Plasma scales:
$$\begin{cases} L \sim 10 \text{ mm} \\ \tau \sim 400 \text{ ns} \end{cases}$$

Load region

 $\begin{array}{c} \left< B_{y} \right> & \mbox{Faraday rotation} \\ \hline \overrightarrow{V_{fl}}, \ \overrightarrow{V_{d}}, ZT_{e}, \ T_{i} & \mbox{Thomson scattering} \\ n_{e}L & \mbox{Imaging interferometry} \end{array}$

An overview of other recent MAGPIE experiments

Shocks in magnetic tower **Magnetic reconnection** Instabilities in magnetized **Differentially rotating** jet experiments shock experiments experiments plasmas D. Russell / F. Suzuki Vidal L. Suttle / J. Hare V. Valenzuela-Villaseca S. Merlini wall rod obstacle colliding jets current path bow shock magnetized jet current path C rotating plasma nagnetized f Ο ΑΑΑ 📿 reverse shock current reconnection layer path Aluminium flow Aluminium flows reverse shock reconnection magnetized 7 layer flows [Suttle+ PRL 2016] wall unstable **Carbon flows Fungsten flov** stagnation layer plasmoids (no reverse shock!)

Imperial College

London

Outline

Imperial College London

- Overview of the MAGPIE facility
- Wire array Z-pinches as X-Ray sources
- X-Ray ablated plasma:
 - Data from imaging diagnostics
 - Local V, T, Z profiles from TS

Compare with R-MHD simulations (Chimera)

- Measurement of magnetic flux penetration
- Future work and conclusions

Wire-Array Z-pinches are versatile X-ray drivers

Imperial College London

Photograph of a tungsten wire array, fielded on the Z-Machine (SNL) Credit: Spielman et al. PoP 1998

Experimental schematic of an iron opacity experiment Credit: Bailey et al. Nature 2015

Wire array Z-pinch experiments on MAGPIE

Imperial College London

Mass density from Gorgon (MHD) simulation

A 32-wire aluminium array used in MAGPIE experiments

Imperial College

London

• Precursor:

- Longer pulse
- Colder spectral character ($T_c \sim 30 \text{ eV}$)
- Radiates $\sim 400 \text{ J}$ in total

Implosion:

- Emitted radiation $\sim 15 \text{ kJ}$ over $\sim 30 \text{ ns}$
- Non-thermal: forest of L shell lines
- Some K-Shell radiation also
- Estimate $T_c \sim 150 \text{ eV}$

• Precursor:

- Longer pulse
- Colder spectral character ($T_c \sim 30 \text{ eV}$)
- Radiates $\sim 400 \text{ J}$ in total

Implosion:

- Emitted radiation $\sim 15 \text{ kJ}$ over $\sim 30 \text{ ns}$
- Non-thermal: forest of L shell lines
- Some K-Shell radiation also
- Estimate $T_c \sim 150 \text{ eV}$

Imperial College

London

- Overview of the MAGPIE facility
- Wire array Z-pinches as X-Ray sources
- X-Ray ablated plasma:
 - Data from imaging diagnostics
 - Local V, T, Z profiles from TS

Compare with R-MHD simulations (Chimera)

- Measurement of magnetic flux penetration
- Future work and conclusions

Overview of experimental setup

Side-On (X-Z plane) view of the experiment

- X-Rays from aluminium wire array Z-Pinch
- Experiments driven by MAGPIE (1.4 MA, 240 ns)
- Ablated silicon plasma expands into magnetic field (B \sim 10 T)
- Target size $\sim 1 \text{ cm}^2$, irradiated uniformly

Optical self emission images [qualitive dynamics]

Imperial College London

Self emission images [$600 \leq \lambda \leq 900 \text{ nm}$]

X-Ray Driven Silicon Ablation - jack.halliday12@imperial.ac.uk

Optical self emission images [qualitive dynamics]

Imperial College London

Self emission images [$600 \leq \lambda \leq 900 \text{ nm}$]

Optical self emission images [qualitive dynamics]

Imperial College London

Self emission images [$600 \leq \lambda \leq 900 \text{ nm}$]

Interferometry [line integrated electron density]

- Interferogram captured at t = 320 ns
- Smooth ${\sim}1\mathrm{D}$ expansion profile confirmed by orthogonal laser probing

Radiative MHD simulations [Chimera]

Imperial College London

Density profile is affected by B-Field.

X-Ray Driven Silicon Ablation - jack.halliday12@imperial.ac.uk

Thomson scattering [localised diagnosis of *T*, *V*, *Z*]

Side-On (X-Z plane) view of the experiment

End-On (X-Y plane) view of the experiment

Imperial College

London

Thomson scattering [localised diagnosis of *T*, *V*, *Z*]

Analysis of Ion-Acoustic Thomson Scattering Data

Imperial College London

(1): Ion Acoustic peak separation depends on $\overline{Z} \times T_e$

(2): Feature width depends on n_e , T_i , and spectral response

(3): Doppler shift from probe wavelength depends on \vec{V} . $\widehat{k_s}$

Enforced $T_e = T_i$, and allowed \overline{Z} to vary ($\tau_{ei} \leq 1$ ns).

Convolved calculated spectra with measured spectral response.

Constrained value of n_e from (near simultaneous) interferometry.

Analysis of Ion-Acoustic Thomson Scattering Data

Measurement of Inverse Bremsstrahlung Coefficient

N. R. L. plasma physics formulary

 $I = I_0 e^{-\kappa_{\nu e} \chi} \Rightarrow \kappa_{\nu e} = \frac{-\ln(I/I_0)}{\kappa}$

Background Image (I_0)

Shot Image (I)

Measurement of Inverse Bremsstrahlung Coefficient

Imperial College London

N. R. L. plasma physics formulary

Next step – Diagnosis of Charge State Distribution

- Overview of the MAGPIE facility
- Wire array Z-pinches as X-Ray sources
- X-Ray ablated plasma:
 - Data from imaging diagnostics
 - Local V, T, Z profiles from TS

Compare with R-MHD simulations (Chimera)

- Measurement of magnetic flux penetration
- Future work and conclusions

Faraday rotation imaging [weighted average of B_{γ}]

• Measure rotation applied to laser polarisation:

$$\alpha \propto \lambda^2 \int n_e \vec{B}.\, d\vec{y}$$

• Obtain interferometry along same line of sight:

$$n_e L = \int n_e dy$$

• Combine data to back-out **weighted average** magnetic field:

$$\overline{B_y} = \frac{\alpha}{n_e L} \propto \frac{\lambda^2 \int n_e \vec{B} \cdot d\vec{y}}{\int n_e dy}$$

Imperial College

London

Faraday rotation imaging [weighted average of B_{γ}]

 Diagnostic measures weighted average magnetic field:

$$\overline{B_y} = \frac{\alpha}{n_e L} \propto \frac{\lambda^2 \int n_e \vec{B} \cdot d\vec{y}}{\int n_e dy}$$

- Cannot diagnose field in the vacuum $(n_e = 0)$
- Within region which can be probed, the field is approximately constant (~1 T)

Faraday rotation imaging [weighted average of B_{ν}]

Faraday rotation imaging [weighted average of B_{ν}]

Plasma parameters relevant to B-field transport

Imperial College London

 Use simulated conditions to calculate dimensionless parameters

$$\beta_{th} = \frac{2\mu_0 n_e \left(T_e + \frac{Ti}{Z}\right)}{B^2} \qquad \qquad \beta_{dyn} = \frac{2\mu_0 \rho u^2}{B^2}$$

• At the leading edge:

 $\beta_{th} \sim \beta_{dyn} \lesssim 1 \qquad \qquad \Omega_e \tau_{ei} \gtrsim 1$

 Magnetisation may be important in low density region

Anomalous resistivity may be driven by the LHDI

- Additional dissipation associated with the Lower Hybrid Drift Instability (LHDI) reported to cause anomalous resistivity
- Gorgon / Chimera includes a model [1] for anomalous resistivity of the form :

$$v_{ei} \rightarrow v_{ei} + v_A, \qquad v_A = \sqrt{\frac{\pi}{8}} \omega_{LH} \left(\frac{v_d}{c_s}\right)^2$$

• Simulations of X-ray ablated plasmas run with classical (Epperlein-Haines) transport only

[1] – Chittingden et al. PoP 1995

Imperial College

London

Flux exclusion is not explained by anomalous resistivity London

- Difficult to see how anomalous resistivity can exclude B-field from experiment:
 - Additional diffusion should allow magnetic flux to penetrate further
 - Thickness of anomalous region is small so overall effect is negligible
- Results are from a 1D simulation
- Impact of v_A is increased by a factor of 100 for the profile of B(x)

Imperial College London

A layer of enhanced conductivity may better explain the experimental result:

Need to diagnose vacuum boundary!

Next step – Local Current Density Measurement

Next step – Local Current Density Measurement

Imperial College London

- Overview of the MAGPIE facility
- Wire array Z-pinches as X-Ray sources
- X-Ray ablated plasma:
 - Data from imaging diagnostics
 - Local V, T, Z profiles from TS

Compare with R-MHD simulations (Chimera)

- Measurement of magnetic flux penetration
- Future work and conclusions

Future work – X-Ray ablated plasma collisions

Imperial College London

Normal incidence

- Structure of stagnated layer determined by radiative cooling
- Use targets of two different materials to investigate mix
- Large system sizes (L ~ 10 mm)

Oblique incidence

- Radiatively cooled jet is produced
- Vacuum-plasma interface with stark difference in morphology

Future work – X-Ray ablated plasma collisions

Conclusions

- Density profiles strongly influenced by ambient B field
- Saw influence of Thomson probe heating
- Radiation field perturbs the charge state distribution (?)
- Magnetic flux was excluded from expanding silicon plasma

Stagnation layer: Thomson measurements

Collective scattering from Ion Acoustic Waves **k**_{s1} kin (TS laser) **k**₁ Response Best Fit 60 Data 50 **k**_{s2} Flow velocities (V_x, V_y) Intensity [Arb] ZT_{e} and T_{i} Z = 5.3 T = 19.0 eV $V_0 = 4.0 \text{ km/s}$ a = 9.6for 22 spatial positions 20 10 K 0.0 Δλ [nm] -0.10.1 0.2 0.3 MURICHIER CON STAR mm **~**

Imperial College

London

Initial ion temperature:

$$E_{ion} = \frac{m_i V_{flow}^2}{2} \approx 250 eV \implies T_{ion} \approx 90 \, eV$$

*Fast T*i – *T*e *equilibration*:

$$\tau_{ei}^{E} \approx 5 \, ns \Rightarrow C_{s} \cdot \tau_{ei}^{E} \approx 0.1 \, mm$$

$$\Rightarrow \Delta T \approx 15 \, eV \quad for T_e = T_i \quad and \ Z = 5$$

Radiative cooling time ?

Carbon $(n_e = 10^{18} \text{ cm}^{-3})$

Carbon $(n_e = 10^{19} \text{ cm}^{-3})$

Silicon ($n_e = 10^{18} \text{ cm}^{-3}$)

-- Silicon (ne = 10¹⁹ cm⁻³)

40

50

30

